Unit 2 – Thermodynamics

- 1. Thermodynamically favorable (spontaneous) reactions have a $(-)\Delta G$.
- 2. Reactions with $(-)\Delta H$ and $(+)\Delta S$ are ALWAYS thermodynamically favorable... "enthalpy driven & entropy driven"
- 3. Reactions that increase the # of moles of gas have a $(+)\Delta S$.
- 4. If ΔG is (-), then K_{eq} >1.
- 5. If ΔG is (-), then the reaction is product favored. If ΔG is (+), then the reaction is reactant favored.
- 6. ΔH and ΔS are usually NOT given in the same units!! Be careful! When using $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$, make sure they match units.
- 7. $\Delta G = 0$ at equilibrium.
- 8. When using $\Delta G^{\circ} = -RT \ln K$, the value for R is 8.314 J/mol K so the answer for ΔG will be in the units of Joules.
- 9. Sometimes a reaction with a $(-)\Delta G$ does not proceed at a measurable rate. They are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control.
- 10. When using $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$ and ΔS° is a negative value, as T increases, we need to be careful of how we describe the mathematical impact on ΔG° . Subtracting negative numbers is hard to explain. Use safe phrases like:

As T increases, we are subtracting a negative number that is larger in magnitude, therefore... ΔG° will be a less negative number, therefore the reaction is less spontaneous. ΔG° will shift in a more positive direction, therefore the reaction is less spontaneous. ΔG° will shift in a less negative direction, and therefore the reaction is less spontaneous.

Remember... $-3 \text{ vs } 3 \rightarrow -3 \text{ is more negative, } 3 \text{ is less negative}$ 1 vs $3 \rightarrow 1$ is more negative, 3 is less negative

Thou Shalt Not Forget Questions

Credit: Dan Reid

Unit 2 – Thermodynamics

- 1. Thermodynamically favorable (spontaneous) reactions have what algebraic sign for ΔG ?
- 2. a) Reactions with what signs for ΔH and ΔS are <u>ALWAYS</u> thermodynamically favorable?
 b) Reactions with what signs for ΔH and ΔS are <u>NEVER</u> thermodynamically favorable?
 c) If a reaction is "enthalpy driven & entropy driven", what are signs of ΔH and ΔS?
- 3. If a reaction increases the # of moles of gas, then the sign for ΔS is what? If a reaction decreases the # of moles of gas, then the sign for ΔS is what?
- 4. If ΔG is (-), then K_{eq} is greater than or less than 1? If ΔG is (+), then K_{eq} is greater than or less than 1?
- 5. If ΔG is (-), then the reaction is ______ favored. If ΔG is (+), then the reaction is ______ favored.
- 6. What are the most common units for ΔH and ΔS ?
- 7. At equilibrium, what is the value of ΔG ?
- 8. a) When using ΔG° = -RT lnK, the value w/ units for R is _____.
 b) If you use the value of 8.314 for R in the equation ΔG° = -RT lnK, then what are the units for ΔG?
- 9. Why might a reaction with a $(-)\Delta G$ not proceed at a measurable rate?
- 10. If ΔS° is negative, as T increases, you are subtracting a ______ number, therefore ΔG° will ______, therefore the reaction will be ______ spontaneous, therefore the reaction will be more _______ favored, therefore K_{eq} will be ______.